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Simulations using hard particles

By MicHAEL P. ALLEN
H. H. Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol BSS ITL, U.K.

A short review is given of recent progress in the computer simulation of liquid crystal
phases using hard particles. Emphasis is placed on the richness of phase behaviour
that may result from the effects of molecular size and shape alone, and on the role
of simulations in testing modern theories of liquid crystal phase transitions, structure
and dynamics. Two specific examples are treated in detail : the simulation of twisted
nematic liquid crystals, allowing a direct calculation of the twist elastic constant and
the helical twisting power of chiral dopant molecules; and the recent quantitative
explanation of diffusive behaviour in isotropic and nematic liquids using kinetic
theory.
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1. Introduction

Computer simulations provide one of the most helpful tools to aid, and test, our
understanding of condensed-matter systems. The basic aim is to relate molecular
shapes, sizes and interactions to the observed bulk properties. A perfect theory would
do this, and essentially ‘explain’ what we see in experiment: an approximate theory
still provides much insight. The role of simulation is to help discriminate between
good theories and bad ones, and shed some light on the reasons for success and
failure. To do this, it is not necessary to model intermolecular interactions precisely :
this would be very difficult, expensive, and, in the end, not very illuminating. The
situation is especially severe for liquid crystals: the molecules are quite complicated,
having flexible or semi-flexible structures, and often possessing interesting electronic
charge distributions leading to electrostatic forces and significant polarizability
anisotropies. Moreover, in these systems, the characteristic phenomena occur over
long time scales and length scales. At present, we wish to establish rather general
relationships between simple molecular parameters and observed properties.
Accordingly, several groups have concentrated on simple, rigid, hard-particle
models, and on rigid-body models incorporating some simple attractive forces, but
ignoring the subtleties of ‘realistic’ potentials. This paper concentrates on the former
category.

Hard spheres are known to provide a firm base for the study of the statistical
mechanics of simple atomic liquids (Hansen & McDonald 1986); we expect them to
be a good guide for molecular fluids in general. Any theory which can explain the
tricky, entropic part of the free energy of a liquid, due principally to molecular
excluded-volume effects, should be easy to extend to cope with attractive forces. The
principles of this approach are well established. Furthermore, it has been known for
many years (Onsager 1949; see also de Gennes 1974 ; Frenkel 1987) that orientational
ordering will be seen when the density of a system of needlelike hard bodies, or indeed
thin platelike ones, increases beyond a critical (shape-dependent) value. Thus, the
most important feature of the systems of interest (orientational ordering) is present
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for these models. Of course, other features of self-assembly, which may depend upon
attractive interactions, may be absent.

Certain classes of theory are well developed for such simple systems. For hard
particles, we especially wish to test the density-functional, van der Waals—Onsager
theories described in the previous paper, which should predict the position of phase
transitions, variation of order-parameters with state point, and other static
properties. We are also interested in kinetic theories for transport coefficients and
other dynamical properties. Both methods have been extensively tested on the hard
sphere fluid, and their advantages and limitations in this area are well known.

In this paper I cannot give a comprehensive review even of this limited field of
hard-particle simulation, and must refer the reader elsewhere (Allen et al. 1993). In
the following sections I briefly summarize the simulation techniques used, describe
some of the liquid crystal phases observed, and then give some examples of recent
progress. I conclude with a look to the future.

2. Simulation methods

Simulations of liquid crystals and other complex fluids are essentially no different
from those of simple liquids that have been carried out over the past 35 years
(Ciccotti et al. 1987). The basic techniques are relatively straightforward to
implement (Allen & Tildesley 1987). Monte Carlo (mc) simulations of hard particles
are particularly simple. One attempts to move each particle in turn, translating it
and rotating it by small amounts. Such a trial move is selected using a random
number generator, rejected if it would lead to overlap of the selected particle with
any other, and accepted if no overlaps result. This requires efficient evaluation of a
pair overlap criterion: a function F' of the orientations and positions of any pair of
molecules, which takes values F' < 1 if they overlap, # > 1 if they do not, and /' = 1
at contact. Efficient prescriptions exist (Vieillard-Baron 1972, 1974 ; Perram et al.
1984; Perram & Wertheim 1985) to determine /' for simple shapes like sphero-
cylinders and spheroids. Variants of the mc prescription conveniently generate
states sampled from the constant-NV7T ensemble (where NV is the number of particles,
V the sample volume and 7" the temperature), the constant-N P7T ensemble (P is the
pressure), and so on.

Hard-particle molecular dynamics (MD) is a little more complicated. The aim is to
solve Newton’s equations of motion. For each hard particle, this means free flight
with constant linear and angular momenta, in between impulsive collisions with
other particles. Having dealt with one collision, the aim is to locate the next: this
involves considering, in principle, every pair of particles, calculating the time at
which they are due to collide, and selecting the next collision in chronological order.
At the point of collision, impulsive forces determined by the conservation laws and
the contact condition (i.e. whether the colliding surfaces are rough or smooth) dictate
the post-collisional momenta. Both free flight and collision dynamics also depend on
the choice of molecular masses and moments of inertia. The technique requires
efficient evaluation of the pair overlap function F and its time derivative F, so as to
locate the exact time of collision for each pair by standard root-finding methods (e.g.
Newton—Raphson). This type of approach has been implemented for a variety of
molecular shapes (Rebertus & Sando 1977 ; Allen et al. 1989). Typically, the constant-
NVE ensemble is probed, where £ is the energy, although constant-NV7T and -NPT
methods are easy to devise.

Phil. Trans. R. Soc. Lond. A (1993)
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Simulations using hard particles 325

Simulations yield simple thermodynamic quantities like the pressure, orientational
and positional order parameters, and structural features like the pair distribution
function. Additionally, Mp simulations yield dynamical quantities like the velocity
autocorrelation function, which may be used to calculate the diffusion coefficient.
The observation of diffusive behaviour is additional evidence for an ordered fluid
phase, rather than a crystalline or glassy solid state. To characterize different phases,
we are most interested in the calculation of order parameters and free energies.
Orientational ordering is measured, in the simple case of a nematic phase, by
S = (P,(cos 6)); here {...) denotes a simulation average, P, is the second Legendre
polynomial and cos 6 = u-n where 6 is the angle between a typical molecular axis
u and the preferred direction in space, the director n. The location of the director, and
the evaluation of S, amounts to a simple eigenvalue problem (Zannoni 1979;
Eppenga & Frenkel 1984). However, a useful check is to measure the orientational
correlation function g,(r) = <{P,(u(0) u(r))) between molecular orientation vectors u
on molecules a distance r apart. In an isotropic phase this function decays to zero
within a few molecular diameters, but in an ordered phase it reaches a long-range
non-zero value g,(r —>00) = S2.

Free energies are calculated by thermodynamic integration from well-charac-
terized state points, or (for low densities only) by Widom’s test-particle insertion
method (Widom 1963). (For more details of free-energy calculations in this context
see (Eppenga & Frenkel 1984; Frenkel 1986; Stroobants et al. 1986; Veerman &
Frenkel 1992).) The observation of order-parameter variation with state point gives
arough-and-ready guide to the phase diagram ; typically 50-100 different simulations
will be needed to cover the range of variation of two parameters (for example, density
and molecular elongation) for a family of simple molecular shapes. Each run might
take a few hours of cpu time.

It is as well to bear some limitations in mind. Typically, the cost of computer time
restricts us to rather small systems (O(10%) particles) and relatively short runs (0(10%)
Mc moves per particle or MD collisions per particle). Periodic boundary conditions are
used to eliminate surface effects, and make the effects of finite-size fairly small. For
nematic phases, there seems to be little evidence that periodic boundaries have a
significant influence on measured properties, in particular on the direction and
magnitude of the orientational ordering. For smectics and columnar phases, on the
other hand, it is important to allow the box dimensions to vary, so as to
accommodate the long-ranged structural order. In general, the study of different
system sizes is very desirable, but few groups have sufficient computer power to
conduct thorough investigations of this kind.

The limitations on run length become most important if the precise location and
characterization of phase transitions is required. The essential problem is that, in
many cases of interest, the transitions are weakly first order or continuous. Recall
that a first-order transition occurs when the free energies of the two phases become
equal; around this point there is a discontinuous variation in properties such as the
energy, the density, and the order parameter characterizing the transition. However,
either phase may be metastable, so that the corresponding branch of the equation of
state will extend beyond the transition point. Consequently, the free energy
calculation is essential to locate the point of thermodynamic coexistence. In a
simulation, one looks for the intersection of two chemical potential curves as
functions of, say, pressure, at constant temperature. The gradients of these curves
will be different at the transition point, where they intersect; for a weak transition,

Phil. Trans. R. Soc. Lond. A (1993)
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the curves become nearly parallel and it is difficult to locate the transition
accurately. For a continuous transition, the curves join smoothly; instead of
discontinuous changes, one sees a divergence in order-parameter fluctuations at the
transition. It is possible to analyse the system-size dependence of these effects for
both continuous and first-order transitions; indeed, this is the essential tool in
characterizing phase transitions by simulation (Mouritsen 1984 ; Binder & Stauffer
1987; Allen 1993a). A precise determination of the liquid—crystal transition point
involves very lengthy runs, and the careful accumulation of distribution functions of
the order parameter, or related quantities. Recent studies of lattice models of liquid
crystals (Zhang et al. 1992; Cleaver & Allen 1993) indicate that run lengths of order
10® Mo moves/particle are needed to do this properly. For hard-particle systems, and
indeed for atomic and molecular simulations in general, runs of such length can only
rarely be undertaken; one recent example is a study of the critical point in the two-
dimensional Lennard—Jones atomic system (Wilding & Bruce 1992). Accordingly, we
have only a crude picture of the phase diagrams for liquid crystal systems modelled
using particles.

3. Hard particle mesophases

In this section we examine four classes of hard-particle model, with the intention
of highlighting the diversity of phase behaviour exhibited even by such simple
potentials. This list is not intended to be exhaustive, but simply to offer examples of
current research. For almost all of these models we describe the phase diagram in
terms of a single shape parameter y, which measures the ratio of the molecular length
to its width, and a reduced density p* = p/p., where p , is the density of closest
regular packing.

(@) Spheroids

One of the simplest shapes studied to date is the spheroid: a sphere subjected to
elongation or compression, possibly by different factors, in mutually perpendicular
directions. Defining the semi-axes (‘radii’) to be a, b and ¢, we distinguish two cases:
axially symmetric molecules, a # b = ¢ (ellipsoids of revolution), and general biaxial
molecules with a # b # c.

In the axially symmetric case, y is simply the axial ratio or elongation e = a/b. For
suitably extreme values e > 1 and e < 1, there is a nematic liquid crystal in which the
symmetry axes are aligned, in addition to an isotropic fluid and fully ordered solid
phase. The regions of nematic stability have been established by Monte Carlo
simulation with free energy calculation, by Frenkel and co-workers, for e = 1/3,
1/2.75, 2.75, 3 (Frenkel et al. 1984 ; Frenkel & Mulder 1985). For less extreme axial
ratios, no nematic phase is seen. For values e & 1 around the well-known hard-sphere
model, a plastic crystal phase (with rotational disorder) is present, but this has
hardly been studied, and is not our concern here. Using these results, and the known
Onsager limit, a global phase diagram could be inferred. This is illustrated in figure 1,
where we show both the oblate and prolate branches.

More extreme shapes, e =1/10, 1/5, 5, 10 have been studied (Allen & Wilson
1989), although free energy calculations have not been attempted in these cases; the
transition points were estimated from the order-parameter variation. These points
are also shown on the figure. In all these cases, spontaneous ordering to form the
nematic phase is seen on uniformly compressing the isotropic phase through the
transition density. It is not necessary to apply an external field. As the system is
compressed beyond the limit of thermodynamic stability of the disordered phase, it

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 1. Phase diagram of oblate and prolate axially symmetric spheroids (schematic). The
horizontal axis is the axial ratio e = a/b, on a scale which highlights the ¢ & ¢! relation. The
vertical scale is the reduced density p*. Filled circles denote phase transitions located by free
energy calculations, open circles those located by other means. Solid lines delimit the melting
transition coexistence region, while dashed lines mark the other transitions (for which the
coexistence regions are small or nonexistent). Phases are: I, isotropic fluid ; N, nematic; X, crystal;
P, plastic crystal. (After Frenkel & Mulder 1985; see also Allen & Wilson 1989.)

at first follows a metastable extension of the isotropic liquid equation of state, before
jumping over to the nematic branch.

The phase diagram is strikingly symmetrical with respect to the oblate « prolate
transformation e« 1/e. This symmetry is expected at low densities because the
second virial coefficient B,(e) equals B,(1/e¢). However, no such relation holds
between the third and higher virial coefficients. Indeed, for more extreme shapes,
there are systematic differences in the equations of state and on the phase diagram:
the platelike systems are slightly more aligned at a given density than the corres-
ponding needlelike ones, and the nematic phase seems to extend to lower densities.

The exact values of e at which the nematic phase is ‘squeezed’ out between
isotropic liquid and solid, on the oblate and prolate sides of the diagram, are not clear
at present. Indeed, there may be some system-size effects on the phase transition,
which require further study. It has been reported (Zarragoicoechea et al. 1992) that
the e = 3 nematic phase, observed by Frenkel & Mulder for system sizes N ~ 100,
disappears when N = 256, for densities p* < 0.76. However, we have also observed
spontaneous ordering, using both Mp and Mc methods, for systems of this size, at
p* <0.76 (C. P. Mason & M. P. Allen 1993, unpublished work). Whatever the reason
for the discrepancy, it highlights the possibility of finite-size effects, and/or
simulation box shape effects, on phase transitions. Clearly, a more extensive study
is needed here, but it should be stressed that, regardless of the outcome for this
particular value of e, the general features of the phase diagram in this region are not

in doubt.
The isotropic—nematic transition for hard ellipsoids of ¢ & 3 seems to be weakly

first order (Frenkel et al. 1984 ; Frenkel & Mulder 1985), i.e. the density jump is
relatively small, ca. 2%. As the shape becomes more elongated, we expect to see
progressive strengthening, towards the Onsager limit where the density jump is ca.
20 %. Nematic precursor fluctuations, the slow collective molecular reorientations
that herald the onset of nematic ordering, have also been observed for ¢ = 3 (Allen
& Frenkel 1987). Thus, although not studied in detail, the transition has the basic
features observed in experiment.

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 2. Phase diagrams of cut spheres and spherocylinders (schematic), to compare with the
spheroid diagram of figure 1. The horizontal axis is the length-to-width ratio v = L/D for cut
spheres, vy = (L +D)/D for spherocylinders. The vertical scale is the reduced density p*. Notation
as for figure 1. Phases are: I, isotropic fluid; N, nematic; S, smectic; X, crystal; C, columnar; K,
cubatic. A plastic crystal phase presumably appears at high density around y = 1, but this has not
been studied to date. (After Veerman & Frenkel 1990; Veerman & Frenkel 1992.)

Molecules having unequal axes a # b # ¢, intermediate in shape between rods and
discs, may additionally show a biaxial nematic phase. For the family of shapes
c/a=10,1<b/a < 10, a rough survey of the phase diagram has been carried out
(Allen 1990a). This entailed the calculation of uniaxial and biaxial order parameters,
but no free energy calculations have been performed to date. The biaxial phase seems
to lie very close to the critical value b/a &~ 4/10 predicted by the simplest theories,
and to be stable for only a rather narrow range of shapes around this value. Once
more, there is an approximate symmetry in the phase diagram corresponding to
rodlike < platelike interconversion {a, b, ¢} & {c, ca/b, a}. This system is of interest for
a second reason: it may shed light on the influence of molecular biaxiality on the
strength of the I N transition. This is expected to weaken significantly as one
departs from the axially symmetric limit, and this would partly reconcile the
discrepancy between the extremely weak transitions seen in experiment and the
rather stronger ones predicted by theory in the axially symmetric case. This effect is
predicted by the theories discussed in the previous paper, and confirmation by
simulation would be very welcome. To date, however, simulations of sufficient length
have not been performed, and we anticipate that this will be quite a challenge.

(b) Spherocylinders

A prolate molecule may be modelled by a spherocylinder, i.e. a cylinder of length
L, diameter D, with hemispherical caps of diameter D at each end. The overall length-
to-width ratio is therefore y = (L+D)/D. Simulations of spherocylinders with
L/D =5 (Frenkel 1988; Frenkel e al. 1988) revealed the presence of a nematic
phase which becomes stable relative to the isotropic liquid at about p* ~ 0.45, and
then a smectic phase for 0.6 < p* < 0.75, where the solid appears. This work was
recently extended to other aspect ratios (Veerman & Frenkel 1990). These authors
observed metastable nematic ordering at L/D = 3, but concluded that no ordered
fluid phases were thermodynamically stable for this shape. They proposed that
an isotropic-smectic—solid triple point exists for L/D =3, and a second,
isotropic-nematic—smectic triple point exists for a shape somewhere in the range
3 < L/D < 5. The tentative phase diagram is illustrated schematically in figure 2.

It may seem surprising that pure rigid-body excluded-volume effects can give rise

Phil. Trans. R. Soc. Lond. A (1993)
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to smectic ordering; more obvious arguments are based on molecular attractions
favouring a side-by-side arrangement, or on the effects of flexible tails. However,
theoretical predictions of thermodynamically stable hard-core smectics have now
appeared, as discussed in the previous paper.

MD simulations by Frenkel and co-workers have revealed the time-dependent
smectic precursor fluctuations which occur as the nematic-smectic transition is
approached from the nematic side. The dynamical technique has also allowed a
comparison of diffusion coefficients parallel to the smectic layer planes, corresponding
to motion within layers, and in the perpendicular direction, corresponding to
interlayer motion. Further details can be found elsewhere (Allen et al. 1989). As in the
case of ellipsoids, there are no dramatic, qualitative discrepancies between the
properties of hard spherocylinders and those of real liquid crystals.

(¢) Truncated spheres

An oblate molecule may be modelled by slicing the top and bottom off a sphere
using two parallel cuts. This model is defined by a length-to-width ratioy = L/D < 1,
D being the sphere diameter, and L being the distance between the parallel flat
surfaces. The cases L/D = 0.1, 0.2, 0.3 have been studied (Veerman & Frenkel 1992).

For the system with L/D = 0.1 it was observed that the system spontaneously
ordered to form a nematic phase at p* ~ 0.33. At p* =~ 0.5, this nematic phase
undergoes a strong first-order transition to a columnar phase, with a density roughly
10% higher. The columnar—crystalline transition occurs at much higher density
(p* 2 0.8).

The situation for L/D = 0.2 seems to be more complicated. This undergoes a
transition at p* &~ 0.5 to a phase having no long-range (second-rank) nematic order,
as measured by the orientational correlation function g,(r) which is very short
ranged, and by the order parameter S = {F,). However, the higher-order
orientational correlation function g,(r) = (P,(u(0) u(r))) is much longer ranged than
go(7), indicating cubic-symmetry orientational correlations. The resultant phase is
termed ‘cubatic’ (not to be confused with ‘cubic’, which refers to a system that also
has translational order). This four-fold orientational ordering results from the
packing of short(ish) columns of particles against each other, with frequent 90°
angles. Simulations (Veerman & Frenkel 1992) using system sizes up to N = 2048
indicate that, at least for the model with L/D = 0.2, the cubatic phase may be
thermodynamically stable over a narrow density range, and is certainly metastable
over a wider range. Whether stable or metastable, it provides an elegant example of
molecular self-assembly in the absence of attractive forces.

Both nematic and cubatic phases seem to be absent for L/D = 0.3, and one
observes direct conversion of isotropic fluid into solid. Very close to the hard-sphere
limit L/D 1 there is, presumably, a plastic crystal phase, but this has not been
studied to date. The tentative phase diagram appears in figure 2.

(d) Flexible chains

Very recently, a study has been conducted of semi-flexible chains of hard spheres
(Wilson & Allen 1993). The aim was to complement other studies of linear, rigid
chains (Whittle & Masters 1991 ; Amos & Jackson 1992), and begin to understand the
role of molecular flexibility on the position of phase transitions and the characteristics
of the orientationally ordered phases. Restricted chain stretching and bending was
permitted, by applying hard repulsive and attractive potentials to the intramolecular

Phil. Trans. R. Soc. Lond. A (1993)
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interactions. An Mp method was used, in which the atoms rattle together, restrained
by hard constraints on bond lengths. The simulations were conducted at constant
pressure (i.e. system volume changes were attempted at regular intervals according
to the usual Mc prescription). For a system of molecules composed of seven touching
hard spheres (y &~ 7) a nematic phase appeared at p* =~ 0.4, and a smectic phase
formed at p* ~ 0.55. Interestingly, the smectic layers, although unambiguous,
turned out to be much less sharply defined than in the analogous case of
spherocylinders with L/D = 5 (i.e. y = 6). However, a direct comparison may not be
strictly appropriate, in view of the different length-to-width ratio and the slightly
lower density of the hard-sphere system.

4. Simulated properties

Here we select static and dynamic properties, characterizing the nematic phase,
calculated by simulation with the intention of testing theories and of pointing the
way to useful comparison with experiment. Again, we cannot aim to be
comprehensive. Two examples are picked out and treated in a little more detail to
give the flavour of current research: the calculation of the helical twisting power for
chiral molecules dissolved in a nematic solvent, and the explanation, by kinetic
theory, of some interesting diffusive behaviour in the nematic phase.

(@) Static properties

The variation of the order parameter with density in the nematic phase, and the
position of the isotropic <> nematic transition, are the simplest criteria for comparison
of theory with simulation. Comparisons of § with the predictions of an Onsager-like
theory based on second and third virial coefficients, for axially symmetric spheroids,
has been made (Tjipto-Margo & Evans 1990). The inclusion of the third-order term
seems to dramatically improve the quantitative agreement between theory and
simulation, as well as permitting an explanation of the loss of e <> 1/e symmetry. This
type of theory (see Tarazona, this volume) is equivalent to making an approximation
to the direct correlation function ¢®.

These same theories are capable of predicting the values of the Frank elastic
constants, which determine the response of the system to any external perturbation
causing an orientational deformation. These quantities may also be related to the
direct correlation function. In the simplest case of the nematic phase, the free energy
of deformation may be written (de Gennes 1974)

AF = %fdr{Kl(V-n)2+K2(n-(V A n)2+Kgn A (V A n))3,

which essentially defines the splay, twist and bend elastic constants, K;, K, and K,
respectively. One route to these quantities, in a simulation, is to study equilibrium
orientational fluctuations as functions of wave vector k. The relevant expressions are
valid for small but finite k£ = |k|, and of course k must be chosen commensurate with
the simulation box: a tedious (and possibly error-prone) extrapolation to low k is
required in practice. Comparisons of theory and simulation have been made for
ellipsoids and spherocylinders (Allen & Frenkel 1988; Allen & Frenkel 1990 ; Somoza
& Tarazona 1989; Tjipto-Margo et al. 1992); in all cases the results are comparable,
but theory systematically underestimates the simulation results. (Some confusion on
this point was caused by an error of a factor of ¥ in the original papers (Allen &

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 3. Twisted periodic boundary conditions used to stabilize twisted nematic phase. We show
four identical copies of the simulation box, each rotated by +1in with respect to its neighbours. Two
particles (one black, one white) each with an arrow to indicate orientation, are shown to illustrate
the effects of the rotation.

Frenkel 1988; Allen & Frenkel 1990).) Recall that these same theories are
comparatively successful in reproducing the transition density and order-parameter
variation, as mentioned above. This discrepancy may be due to the sensitivity of the
elastic constants to the variation of the direct correlation function ¢‘® at larger
separations, outside the hard-core overlap region. However, it is also possible that
the simulation results are at fault, through system-size effects, problems with
extrapolating to low k, and so forth. In any case, a more detailed knowledge of the
form of ¢® for both isotropic and nematic molecular liquids would be helpful in
understanding more about these quantities.

Very recently, a more direct approach has been made (Allen & Masters 1993) to
calculating the twist elastic constant K,, by directly measuring the torque density in
a system of molecules in twisted periodic boundary conditions. For a cuboidal
simulation box of dimensions L, = L, # L,, periodic replicas in the +z direction are
rotated by, respectively, +3m about the z axis relative to the original. This rotation
is applied to centre-of-mass coordinates as well as molecular orientations, but for a
nematic fluid the distortion of the positional degrees of freedom is inconsequential.
One full turn of the orientational distribution is thus effectively implemented over
four box lengths in the z direction, as shown in figure 3.

A uniformly twisted nematic director field,

n(r) = (cos ¢(z), sin ¢(z),0), de¢/dz =k = const.,

with the director everywhere perpendicular to the z axis, of wave vector
k= 2n/A =n/2L,, is stabilized in these boundaries. The twist elastic free energy is

AF =1VK, i?

and associated with this is an internal torque density, rather like the internal
pressure which is present in any system confined within periodic boundaries.
Measurement of the torque density gives the twist elastic constant K,. Preliminary
estimates of K,, for e =5 and e =10 prolate ellipsoids of revolution, give the
expected density dependence, and values roughly consistent with (if slightly lower
than) the same quantities measured by fluctuation methods, but more extensive
studies of system-size and k-dependent effects are needed before firm conclusions are
drawn. This remains an active area of research.

Finally in this section, we discuss chiral nematic, or cholesteric, phases,
characterized by the twisted director field which results when small concentrations
of chiral (left- or right-handed) dopant molecules are added to a nematic phase. In
the presence of such chiral dopants, the twist free energy becomes (de Gennes 1974)

AF = WK, (k—k,)?.
Phil. Trans. R. Soc. Lond. A (1993)
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Figure 4. The chemical potential as a function of twist angle, #(¢), for an X-shaped ellipsoid dimer
(dashed line) and its mirror-image function u(—¢) (dotted line). The absolute position of the
vertical scale is arbitrary. Below, the helical twisting power £(¢) obtained from the difference
between these functions.

At low dopant concentrations there is a linear relation between concentration and
equilibrium wavenumber k,, written conventionally as k, = 2n/A =4nfp where
p = N/V is the number density of dopant molecules. The constant of proportionality,
f, has the dimensions of area, and is termed the helical twisting power. At first sight,
the calculation of £ seems very difficult. Typical values of the helix pitch, for dopant
concentrations of a few percent, are comparable with the wavelength of visible light,
far larger than accessible system sizes in molecular simulations using N & 1000
particles. The requirement to avoid unphysical surface effects by using periodic
boundary conditions means that the helix pitch must be commensurate with the
simulation box length. High concentrations of dopant would be needed to produce
such pitches, but the definition of f is only valid in the dilute régime. Clearly, the
properties of a nearly pure liquid of chiral molecules will be quite different from those
of a dilute solution. In experiment, more exotic phases (the ‘blue’ phases) may be
formed as the dopant concentration increases, so it may not be at all relevant to
study a small, highly concentrated sample, in any case. Moreover, we anticipate that
very long simulation timescales would be needed to establish the equilibrium helix
pitch for a given composition of liquid.

We have recently demonstrated that the helical twisting power f§ can, in fact, be
measured in a simulation using the twisted boundary conditions described above
(Allen 1993b). In the very simple case where the chiral dopants are composed of two
hard-ellipsoidal monomer units, in a scissors arrangement, dissolved in a hard
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ellipsoid solvent, one merely needs to simulate the monomer ellipsoid system. For a
more general chiral dopant, a single molecule dissolved in the nematic solvent is
needed. The method amounts to an accurate calculation of the chemical potential
difference u; — ptp between mirror-image left- and right-handed dopant forms in a
uniformly twisted nematic phase of fixed pitch. This structure is stabilized by
conducting the simulation in the twisted periodic boundary conditions just described.
The chiral dimer is representative of a class of molecules actually synthesized and
studied experimentally, and known to have very high values of f (Heppke et al. 1986;
Heppke et al. 1990). In figure 4, we show the results of this study for the particular
case of a family of X-shaped dimers, composed of two ellipsoids touching near their
‘equators’. The family is characterized by the twist angle ¢ between the two arms
of the X.

The chemical potential of this species, in the twisted nematic, is shown as a
function of ¢ in the figure. This may simply be obtained from the pair distribution
function for ellipsoids in the simulated system: it is not necessary to introduce a
chiral molecule explicitly. The curve is not symmetrical to the transformation
between mirror-image forms of the dimer ¢ <> —¢, as can be seen; the difference
between these two functions leads to an estimate of the helical twisting power (see
figure) as a function of ¢. We see that the most effective chiral dopants in this family
have a twist angle somewhat higher than 45° (for X shapes, both ¢ = 0° and ¢ = 90°
are non-chiral). The magnitudes of £ observed here are roughly comparable with
those seen in experiment. For example, a 1% solution of the dopant would
produce an equilibrium helix pitch of the order of hundreds of molecular lengths.
Needless to say, it would be very expensive to simulate a system of this size directly.

(b) Dynamical properties
Now we turn to the simplest dynamical property, the diffusion coefficient, which
also gives us an example of simulation results encouraging the development and
refinement of theory. In the nematic phase two separate diffusion coefficients D and
D, describe translation respectively parallel and perpendicular to the director. Each
is the time integral,

D= Jw diey(t), D, = Jw dtc, (¢),

0

of an appropriate component of the centre-of-mass velocity autocorrelation function

¢(t) = <U||(0)”||(t)>: ¢ (t) =<v. (0)v,(8)).

Here v is either of the two cartesian components perpendicular to the director, while
vy lies along it. In the isotropic phase, there is just one function ¢(¢), and one diffusion
coefficient D. These quantities have been measured, in simulations of the isotropic
and nematic phases, for hard ellipsoids of revolution. It was observed (Allen 1990b)
that, for highly non-spherical particles, c(f) decays on two well-separated timescales
in the isotropic phase (see figure 5).

In the nematic phase, for prolate ellipsoids, ¢,(f) and ¢, (t) are both two-timescale
functions, but are dramatically different in appearance: ¢, (t) decays very rapidly,
having only a weak long-time component, while ¢,(¢) is predominantly a slowly
decaying function (extending in some cases over many tens of collision times).
Moreover, at densities just above the isotropic <> nematic transition point, D) rose to
a plateau with increasing density, before resuming the normal monotonically
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Figure 5. Normalized velocity autocorrelation functions, plotted on a logarithmic scale: c(t)

(diamonds) for e = 10 prolate ellipsoids, in the isotropic phase at p* = 0.25; ¢,(¢) (squares) and c, (¢)

(plus signs) for e = 10 prolate ellipsoids, in the nematic phase at p* = 0.35. The lines are the kinetic

theory predictions (Tang & Evans 1993). The time ¢ is measured in units of the mean time between
collisions per particle £,.
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Figure 6. Diffusion coefficients D, Dy, and D, for e = 10 prolate ellipsoids, plotted on a logarithmic
scale, as functions of reduced density p*. Points, simulation results; lines, kinetic theory (Tang &
Evans 1993).

decreasing behaviour (see figure 6). For oblate particles, similar behaviour was seen,
but with the roles of ¢/(f) and ¢, (!) (and D, and D) exchanged.

Until recently, there was no quantitative explanation of these results, even for
densities where one might expect kinetic theory to be valid. Hess et al. (1991)
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developed a theory based on relating the highly ordered system of ellipsoids to a
reference system of hard spheres, by affine transformation. This correlated, very
successfully, the anisotropy of diffusion, (Dy—D,)/(D;+2D,) with the order
parameter S and molecular shape e, but provided little insight into the microscopic
origin of these effects. Very recently, a kinetic theory has been constructed (Tang &
Evans 1993) for these highly elongated ellipsoids. At the heart of this approach is the
expression of the velocity correlation functions above in terms of a set of friction
coefficients, one for each of the basic relative orientations of the axis vector of the
moving particle u, the director n, and the velocity vector v. The friction coefficients
themselves are calculated using a projection-operator approach for binary collisions,
involving the distribution function for pairs at contact. This kinetic theory naturally
leads to the two-timescale decay for the correlation functions, mentioned above.
With only the order parameter S and the collision rate as input for the theory, and
no adjustable parameters, the agreement with the simulation results is spectacularly
good (see figures 5 and 6). This also illustrates that, for molecular systems, kinetic or
‘Enskog’ theory is not synonymous with single-exponential decay of the time
correlations: the situation is more complicated, but can still be described perfectly
adequately.

5. Conclusions

In this short paper, I have tried to show the current capabilities of computer
simulation in this field, present some recent results, and point the way to the future.
I have restricted my view to hard-particle simulations; this has excluded much
interesting work on other simple models of liquid crystals (see, for example,
Luckhurst ef al. 1990; de Miguel et al. 1992; de Miguel et al. 1991) and other self-
assembled systems (see, for example, Smit 1993, and references therein). Simulations
of all these systems are just reaching the stage where they can be genuinely useful
in calculating quantities of practical interest, as well as fulfilling the need to test out
theories. One of the challenges over the next few years will be to conduct simulations
of large-scale inhomogeneous systems, so as to look at defect structures and textures,
behaviour near interfaces, and polymer liquid crystal phases, for example. Another
challenge will be to study phase transitions in sufficient detail, and with sufficient
precision, to compare with experiment. This remains an interesting and active area
of research, which undoubtedly will grow as computers continue to increase rapidly
in power.
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I have had helpful conversations and collaborations with many individuals, but should note
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